Subject Code: PH5L003 Subject Name:  Quantum Mechanics I L-T-P: 3-1-0 Credit: 4
Pre-requisite(s):Nil
Introduction and Overview of quantum mechanics; Formalism: Linear vector space; State vectors and operators; Observables; Eigenvalues and eigenvectors;Dirac's notation; Hermitian adjoint operators. Position and Momentum Space:Different examples; Generalization for 3D cases.  Eigenvalues and eigenvectors; Harmonic Oscillator: One dimensional; Raising and Lowering operators; Eigenstates; Coherent states; generalization to 3D; Isotropic oscillator; Angular Momentum: Angular momentum and rotation; General angular momentum; ; Orbital angular momentum; spherical harmonics; Spin angular momentum; Addition of angular momentum; Wigner-Eckart Theorem; Spherical Tensors; Central Potential:Hydrogen atom; Radial equation; Quantum Dynamics: Time evolution operator, Heisenberg picture; Interaction picture; Time Independent Perturbation Theory: Non-degenerate case; degenerate case. Time Dependent Perturbation Theory: Fermi Golden Rule; Adiabatic approximation; Sudden approximation.  WKB Approximation: Bohr-Sommerfeld quantization Rule; Tunneling. Identical Particles: Pauli's exclusion principle; Two electron atoms; Quantum Statistics.
Text/Reference Books:
  1. Griffiths David J., Introduction to Quantum Mechanics, Pearson Education Inc.
  2. Sakurai J. J., Modern Quantum Mechanics, Addison Wesley.
  3. Gasiorowicz F. S., Quantum Physics, John Wiley (Asia).
  4. Schiff L. I., Quantum Mechanics, McGraw-Hill.
  5. Merzbacher E., Quantum Mechanics, John Wiley (Asia).
  6. Mathews P. W. and Venkatesan K., A Textbook of Quantum Mechanics, Tata McGraw Hill
  7. Schwabl F., Quantum Mechanics Narosa.
  8. Bransden B. H. and  Joachain,C. J.  Introduction to Quantum Mechanics Longman